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PHYSICS IA: HOW SALINITY AFFECTS VISCOSITY 

 

1. INTRODUCTION 

As a passionate swimmer, I know that there are many extraneous factors which affect a swimmer’s speed. One 

of the factors is the amount of salt present in water, or in scientific terms, the salinity. I know this because I 

have been to many places in which I noticed that it is very difficult to swim, in particular the Dead Sea. An 

aqueous solution of NaCl (table salt) is known as brine. Salinities vary depending on the site of water, for 

example, most swimming pools do not contain salt and are rather chlorinated. On the other hand, seas and 

oceans both contain a lot of salt, where some have higher salinities than others. On average, the salinity of 

seawater is about 3.5%—that is, for every litre of seawater there are approximately 35 grams of salt dissolved 

in it (Andrews, 2018). 

 

That being said, it is quite difficult to conduct an accurate experiment which directly investigates the effect of 

salinity on a swimmer’s speed due to the presence of myriad confounding variables, as well as the miniscule 

time differences of the swimmer with relatively large uncertainties caused by reaction time and/or the 

swimmer’s physical condition. Upon researching, I discovered that this topic has links to engineering physics 

and this is where another property becomes useful: dynamic viscosity. The dynamic viscosity of a fluid, η, is a 

quantity that describes the fluid’s resistance to flow, and its SI unit is Pascal-seconds, 𝑃𝑎𝑠 (Kirk, 2014). A fluid 

with a high viscosity will have a high resistance to flow and will require a lot of force to be able to move through 

it. As such, it would be logical to think that water of high viscosity will take longer to swim in than water with 

lower viscosity. This led me to the research question: “How does the salinity of brine affect its viscosity (Pas)?”  

 

Viscosity can be calculated using Stokes’ Law, which involves releasing a perfect sphere of known radius and 

density in a fluid of known density and determining the ball’s terminal velocity. A ball in water will have 

upthrust, 𝑈, a viscous drag force, 𝐹𝐷, and Weight, 𝑊, all acting upon it (see Figure 1). For the ball to be at 

terminal velocity, these vertical forces must be balanced such that:  

𝑊 = 𝑈 + 𝐹𝐷 (1) 

 

By substituting formulae into each of these variables and re-arranging, we can obtain an equation for viscosity 

as follows: 

𝜂 =
2𝑔𝑟2(𝜌 − 𝜎)

9𝑣𝑡
, (2) 

(Kirk, 2014) 

where: 

𝑔 = gravitational field strength (ms−2) = 9.81 ms−2 

𝑟 = radius of sphere (m) 

𝜌 = density of sphere (kgm−3)  



 

2 

𝜎 = density of fluid (kgm−3) 

𝑣𝑡 = terminal velocity of sphere (ms−1) 

 

We can verify that the standard unit of viscosity is indeed 𝑃𝑎𝑠: 

[𝜂] =
ms−2 × m2 × kgm−3

ms−1  

=
kgm0s−2

ms−1  

= kgm−1s−1 

= (kgm−1s−2)s 

Since a pascal is a unit of pressure defined as the force (kgms−2) per unit area (m2): 

1 Pa = 1 kgm−1s−2 

∴ [𝜂] = Pas 

 

2. HYPOTHESIS 

Adding salt increases the mass of the fluid and consequently its density, which means that the difference in 

densities (𝜌 − 𝜎) would become smaller. Since this value is directly proportional to the viscosity, one could 

assume that there is a negative linearity between the salinity and viscosity of brine. However, this is assuming 

that the velocity of the sphere will not be affected by the salinity. It would make sense for the sphere to travel 

with a slower terminal velocity when the density of the fluid is increased, which means that a decrease in 

velocity results in an increase in viscosity, as they are inversely proportional, according to (2). Overall, the 

effect of the salinity on the viscosity should, in theory, be dependent upon both the increasing fluid density and 

the decreasing velocity. My intuition tells me that the latter will be the more prominent factor, meaning that an 

increase in the salinity should increase the viscosity of brine.      

        

 

Figure 1: The properties of a perfect sphere in a fluid and the forces acting upon it. 

Source: (Kirk, 2014) 
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3. EXPERIMENTAL DESIGN 

3.1 Variables 

Independent Variable: The concentration of salt in water (gdm−3). The concentration intervals are: 0, 50, 

100, 150, 200, 250, 300, 350 and 400 gdm−3. The highest interval cannot be higher than 400 gdm−3
 because 

the maximum solubility of salt in boiling water is about 40% (Andrews, 2018). Furthermore, by having one of 

my intervals (0 gdm−3) as a control with no salt, I was able to compare the calculated value of viscosity to the 

literature value of 0.89 mPas (IAPWS, 2008) at room temperature, 25℃. In order to achieve each salt 

concentration, an equivalent mass had to be calculated, using:  

Concentration =
mass

volume
(3) 

Since I used a 250ml measuring cylinder, the volume remained constant (assuming that the salt’s volume is 

negligible), therefore the mass was figured out using (3), which resulted in increments of 12.5 grams.  

 

Dependent Variable: The viscosity of the brine solution (Pas), which can be calculated using (2). In order to 

do so, the terminal velocity of the ball (ms−1) was measured using a motion QED in conjunction with light 

gates. To increase the reliability of the results, the velocity reading was taken three times, and two balls of 

different radii were used to perform the calculations.   

 

In addition to the independent and dependent variables, there are a number of other factors which might affect 

the viscosity, therefore need to be controlled. The table below summarizes these variables. 

 

Control  Why and how it was controlled 

The way in which the 

balls are dropped 

The height of the balls from the measuring cylinder and the force applied to them before 

dropping could affect their velocity. I therefore dropped them from the same place—

from the tip of the measuring cylinder—and with no initial force; just casually let the 

balls ‘slip’ from my hand.   

Distance of separation 

between light gates 

Since I measured the terminal velocity, the factors of time and distance had to be 

considered. The motion QED finds the time; however, it does not know the distance of 

separation between the light gates and therefore had to be adjusted manually and 

registered as 20cm. This was measured using a ruler and the light gates remained held 

in position using a clamp. 

Temperature of water 
Temperature is one of the factors which affects the viscosity of a fluid. Therefore, the air 

conditioner was set to 25℃. 

Volume of water 

Both the concentration and the velocity of the ball are affected if the volume of water in 

the measuring cylinder is changed. As a result, the volume of water for all intervals of 

the independent variable stayed at 250ml.  

Table 1: Identifying and analysing control variables. 
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Water on the ball 

Dropping the ball in water made it wet, therefore it was dried using a cloth before it was 

dropped again, as the added water would increase the mass of the ball, consequently 

affecting its velocity, and hence the calculated viscosity.  

Parallax error 

When filling the measuring cylinder with 250ml of water, the volume was measured at 

eye level to prevent parallax error—that is, the misreading caused due to the distortion 

when viewing from different angles.   

Calibrating balance 
In order to measure the mass accurately, the balance was calibrated using the weighing 

boat such that only the mass of the salt was measured, preventing a systematic error.  

 

3.2 Apparatus 

Motion QED (±0.001ms−1)     Cloth 

250ml Measuring Cylinder (±2 × 10−6m3)    Power Pack 

Balance (±10−5kg)      Neodymium Magnet 

30cm Ruler (±0.01m)      Stirrer 

Micrometre (±10−5m)      Clamp 

500g of Table Salt      Kettle 

8 300ml Beakers      Leads 

2 Light Gates       Weighing Boats 

2 Steel Balls (8mm & 10mm radii)    Tap Water 

 

3.3 Procedure 

Firstly, eight solutions of brine were formed, ranging from 12.5g to 100g in increments of 12.5g. The salt was 

measured in weighing boats using a balance. In order to dissolve the salt, it was added to water in a kettle and 

boiled. Following that, the solutions were put in beakers and stirred using a stirrer, then were left for 24 hours 

to cool down to room temperature. This is shown in Figure 2. I proceeded by setting up the apparatus as shown 

in Figure 3. Leads were connected from the power pack to the 

motion QED and light gates—which were held using a clamp 

at a separation distance of 20cm. This was measured using a 

30cm ruler. Note that the uncertainty in the distance 

measurement was not accounted for as there was no option to 

add uncertainties in the motion QED, therefore it was simply 

registered as exactly 20cm. Since the first interval (0 gdm−3) 

contained no salt, that solution wasn’t heated but rather tested 

immediately. 250ml of tap water was poured into the 

measuring cylinder, followed by placing the measuring cylinder between the light gates, setting the motion QED 

to display average velocity, and dropping the 8mm ball from the top of the measuring cylinder. After it passed 

Figure 2: Brine solutions ranging from 12.5𝑔 

(left) to 100𝑔 (right). 
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through both the light gates, the velocity was recorded. The ball was removed using the magnet, dried using the 

cloth, and then dropped again twice. The procedure was repeated using the larger 10mm ball, and then again 

for the other eight beakers of varying concentrations. 

 

In addition to the velocity, the radius and density of the balls, as well as the density of the solutions were required 

to be able to calculate the viscosity. While the radii are given as 8mm and 10mm for the balls, these values are 

not precise and could have been rounded. As such, a micrometre was used to measure the exact radii of the 

balls. The volume of the sphere was then calculated using the equation: 

𝑉 =
4

3
𝜋𝑟3 (4) 

The balls’ masses were measured using a balance, and with this information, I calculated the balls’ densities 

using (3) (but in this case concentration is density). Similarly, the solutions’ densities were calculated using (3), 

where the solution’s mass represents the water’s volume (0.25dm3) + the salt’s mass (kg). Finally, the 

viscosities were calculated using (2). 

 

3.4 Safety Considerations 

Care was needed when using the water-filled measuring cylinder to ensure than no water would come into 

contact with any of the electrical equipment as that could have damaged them. Furthermore, the neodymium 

magnet was very strong and therefore electronic devices had to be kept away from it. Finally, using the light 

Table Salt 

Stirrer 

Clamp 

250 ml measuring 

cylinder 

Cloth 

300 ml beaker 

containing brine 

solution  

Power pack 

Motion QED 

Weighing boats 

Balance 

Light gate 

Figure 3: Annotated setup of the apparatus showing most of the equipment.  
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Table 2: A summary of the properties of the two steel balls. (3) and (4) have been used to calculate the densities and volumes respectively. 

 

Table 3: Data showing the salt concentration and the velocity of the small steel ball. Bold values are anomalies. 

gates resulted in laser light being emitted from them, so I had to be careful to not directly look at it. There were 

no notable environmental or ethical concerns. 

 

4. RESULTS & NUMERICAL ANALYSIS 

 

 

The values in Table 2 have been formatted to 3 significant figures and the uncertainties to 2 significant figures, 

with the exception of the mass—which has been formatted to 4 significant figures—because the balance 

featured higher precision. We can see that the density values for the two balls are similar and this makes sense 

since they are made of the same material. These values are close to the accepted range for the density of steel: 

7750–8050 kgm−3 (Wikipedia, 2019). Although the two values aren’t exactly the same, the percentage 

difference is about 0.4%, which is negligible. All of the percentage uncertainties are miniscule, reflecting the 

high precision of the micrometre and the balance. The following uncertainty propagations were used to calculate 

the uncertainties in the volumes and densities of the balls: 

∆𝑉 = 3𝑉
∆𝑟

𝑟
 

∆ρ = ρ (
∆𝑚

𝑚
+

∆𝑉

𝑉
) 

 

 

Radius 

𝒓/ 𝐦 

∆𝒓 = ±𝟏𝟎−𝟓𝐦 

Volume 

𝑽/ 𝐦𝟑
 

Mass 

𝒎/ 𝐤𝐠 

∆𝒎 = 𝟏𝟎−𝟓𝐤𝐠 

Density 

𝛒/ 𝐤𝐠𝐦−𝟑 

Small ball 0.00784 2.02 × 10−6 ± 7.7 × 10−9 0.01630 8080 ± 36 

Large ball 0.00944 3.52 × 10−6 ± 1.1 × 10−8 0.02835 8050 ± 28 

 

 

Terminal Velocity 

𝒗𝒕/. 𝐦𝐬−𝟏  

∆𝒗𝒕 = ±𝟎. 𝟎𝟎𝟏 

 

Concentration 

𝒄/ 𝐠𝐝𝐦−𝟑
 Trial 1 Trial 2 Trial 3 

Mean Velocity 

�̅�𝒕/. 𝐦𝐬−𝟏 

0 ± 0.0 1.326 1.355 1.330 1.34 ± 0.015 

50 ± 0.4 1.321 1.326 1.313 1.32 ± 0.0065 

100 ± 0.8 1.126 1.285 1.297 1.29 ± 0.0060 

150 ± 1.2 1.271 1.278 1.273 1.27 ± 0.0035 

200 ± 1.6 1.267 1.233 1.248 1.25 ± 0.017 

250 ± 2.0 1.230 1.241 1.476 1.24 ± 0.0055 
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Table 4: Data showing the salt concentration and the velocity of the large steel ball. Bold values are anomalies. 
 

 

 

 

By observing Table 3 & Table 4, we can see that there is a negative correlation between concentration and 

mean velocity. Furthermore, the mean velocities of the larger ball appear to be higher on average than those of 

the small ball. Looking at (2), we can see that 𝑣𝑡 is proportional to 𝑟2, so this increase in velocity is 

mathematically comprehensible. The values of the mean velocity were formatted to three significant figures 

while their uncertainties, less precisely, have been formatted to two significant figures, as those are appropriate 

levels of precision given my data. Although the percentage uncertainties are quite low, with the highest being 

about 1.1%; the uncertainty values are close to the concordances of the three readings, which means that the 

reliability is not that high and could have been heavily impacted by random errors. As such, conducting five or 

more trials for each concentration could have potentially resulted in greater reliability. Furthermore, it could 

have allowed for an uncertainty calculation using standard deviation instead of half the range, which provides 

a much more accurate value. Some readings were identified as anomalies (shown in bold) as they were 

unconcordant, i.e. they did not fit within the general trend of the data. For instance, 0.632 in row 4 of Table 4 

is significantly different from 1.335 and 1.311. As such, these anomalies were excluded from further 

calculations. For the following example calculations, row 2 values from Table 4 will be used: 

 

300 ± 2.4 1.223 1.240 1.229 1.23 ± 0.0085 

350 ± 2.8 1.195 1.209 1.201 1.20 ± 0.0070 

400 ± 3.2 1.170 1.190 1.169 1.18 ± 0.011 

 

 

Terminal velocity 

𝒗𝒕/. 𝐦𝐬−𝟏  

∆𝒗𝒕 = ±𝟎. 𝟎𝟎𝟏 

 

Concentration 

𝒄/ 𝐠𝐝𝐦−𝟑
 Trial 1 Trial 2 Trial 3 

Mean Velocity 

�̅�𝒕/. 𝐦𝐬−𝟏 

0 ± 0.0  1.378 1.403 1.381 1.39 ± 0.013 

50 ± 0.4  1.372 1.358 1.355 1.36 ± 0.0085 

100 ± 0.8 1.346 1.350 1.350 1.35 ± 0.0020 

150 ± 1.2 1.311 1.335 0.632 1.32 ± 0.012 

200 ± 1.6 1.297 1.280 1.292 1.29 ± 0.0085 

250 ± 2.0 1.258 1.276 1.270 1.27 ± 0.0090 

300 ± 2.4 1.224 1.227 1.231 1.23 ± 0.0035 

350 ± 2.8 1.210 1.215 1.223 1.22 ± 0.0065 

400 ± 3.2 1.185 1.190 1.169 1.18 ± 0.011 
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Uncertainty in concentration:           Calculation of mean velocity:        Uncertainty in mean velocity: 

   
∆𝑐

𝑐
=

∆𝑚

𝑚
+

∆𝑉

𝑉
              �̅�𝑡 =

𝑣1+𝑣2+𝑣3

3
                 ∆�̅�𝑡 =

𝑣𝑡 𝑚𝑎𝑥−𝑣𝑡 𝑚𝑖𝑛

2
 

   ∴ ∆𝑐 = 𝑐 (
∆𝑚

𝑚
+

∆𝑉

𝑉
)                         �̅�𝑡 =

1.372+1.358+1.355

3
                        ∆�̅�𝑡 =

1.372−1.355

2
 

   ∆𝑐 = 50 (
0.01

12.5
+

0.002

0.250
)     = 1.361 ms−1                                     = ± 0.0085 ms−1 (2 𝑠. 𝑓. ) 

   ∆𝑐 = ±0.44                                              = 1.36 ms−1 (3 𝑠. 𝑓. )                                 

         = ±0.4 gdm−3 (1 𝑑. 𝑝. )         

                                   

 

 

Table 6 suggests that the there is a positive correlation between concentration and the viscosity of the solution 

for both balls, which was expected; however, the viscosity values between the two balls differ significantly by 

about 0.3 Pas, which was not expected, as they should, theoretically, be similar. Furthermore, there seems to be 

a systematic error of ~103 for all the values, since we know that the true value of water’s viscosity is 0.89 mPas, 

whereas the values obtained are significantly higher. These errors will need to be taken into consideration during 

further analysis. The viscosity uncertainties have been formatted to three decimal places and are relatively low, 

ranging from 1.0%–2.3%. As for the uncertainty calculations, using the second row for the large ball: 

 

 𝜂 =
2𝑔𝑟2(𝜌−𝜎)

9𝑣𝑡
  ∴ 𝜂 =

2×9.81×(0.00944)2×(8050−1050)

9×1.36
= 1.00 (3 𝑠. 𝑓. ) 

∆𝜂

𝜂
= 2

∆𝑟

𝑟
+

∆𝑣𝑡

𝑣𝑡
+

∆(𝜌−𝜎)

𝜌−𝜎
   ∴ ∆𝜂 = 𝜂(2

∆𝑟

𝑟
+

∆𝑣𝑡

𝑣𝑡
+

∆𝜌+∆𝜎

𝜌−𝜎
) 

∆𝜂 = 1(2
1×10−5

9.44×10−3 +
0.0085

1.36
+

26+17.6

8050−1050
) = ±0.0145 Pas   ∴ ∆𝜂 = ±0.015 Pas (2 𝑠. 𝑓. ) 

 

Concentration 

 𝒄/. 𝐠𝐝𝐦−𝟑
 

Viscosity 

 𝜼/. 𝐏𝐚𝐬 

Small ball Large ball 

0 ± 0.0 0.710 ± 0.014 0.987 ± 0.017 

50 ± 0.4 0.714 ± 0.011 1.00 ± 0.015 

100 ± 0.8 0.719 ± 0.010 1.00 ± 0.010 

150 ± 1.2 0.724 ± 0.0090 1.01 ± 0.018 

200 ± 1.6 0.733 ± 0.017 1.03 ± 0.016 

250 ± 2.0 0.740 ± 0.011 1.04 ± 0.017 

300 ± 2.4 0.738 ± 0.013 1.07 ± 0.013 

350 ± 2.8 0.750 ± 0.013 1.07 ± 0.016 

400 ± 3.2 0.761 ± 0.015 1.09 ± 0.020 

Mass 

𝒎/. 𝐤𝐠 

∆𝒎 = ±𝟎. 𝟎𝟎𝟐 

Density 

𝝈/  𝐤𝐠𝐦−𝟑 

0.2500 1000 ± 16.0 

0.2625 1050 ± 17.6 

0.2750 1100 ± 18.0 

0.2875 1150 ± 18.7 

0.3000 1200 ± 19.4 

0.3125 1250 ± 20.2 

0.3250 1300 ± 21.0 

0.3375 1350 ± 21.8 

0.3500 1400 ± 22.5 

Table 5: Variation of mass & density of the brine 

solution with increasing salinity.  

Table 6: Data showing the relationship between salt concentration 

and viscosity of brine solutions using two steel balls of different radii.  
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5. GRAPHICAL ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the previous section we know that there was a large systematic error in the viscosity values, therefore all 

the data points have been translated 103 units down (although the values are the same, the units changed to 

mPas, which represents the shift). We can see that the best fit line passes through all the data points, and that 

there is a very strong relationship for both balls as the r2 values are 0.9678 and 0.9718 for the small and large 

balls respectively, reflecting the high precision of the data. The R-squared test assesses the degree of correlation 

between two variables. A value of 1 shows a perfect fit between the trendline and the data, i.e. a strong linear 

relationship, whereas a value of 0 shows no statistical relationship between the line and the data. In spite of the 

high r2 values, the accuracy of the data seems to be lacking as the η-intercepts for both balls are different from 

what is to be expected. The viscosity of saltless water at room temperature is 0.89 mPas, however the values 

obtained from both balls are different from this; although the large ball’s value (0.987 mPas) is closer to the 

true value than the small ball’s value (0.71 mPas). Interestingly, the large ball’s gradient is more than double 

that of the small ball’s, which is strange since the viscosity should technically be increasing at the same rate 

with respect to concentration, regardless of the ball used. Although the individual error bars seem to be small 

and relatively insignificant (particularly the horizontal ones for the concentrations), there are whopping 

uncertainties in the gradients, at 35% for the large ball and 60% for the small ball; an aspect which hinders the 

strength of the linear relationships. On the other hand, the uncertainties in the intercepts are significantly lower 

at about 2%. 

Figure 4: A graph (created using Desmos) showing a linear relationship between salt concentration, c, and viscosity, η, using 

a small steel ball and a larger one. The lines of best fit (𝑦 = 𝑚𝑥 + 𝑐) are indicated with the red line, while the blue and green 

lines represent the maximum and minimum slopes respectively. The equations, gradients, η intercepts and r2 values are given.  

(Small ball) 

(Large ball) 
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In addition to the linear graph, quadratic models have been plotted. Similarly, the models pass through all the 

data points. At first glance, the quadratic models seem to fit better than the linear ones, due to the slightly higher 

r2 values, however this is a point of discussion.  

 

6. CONCLUSION  

In response to my research question “How does the salinity of brine affect its viscosity (Pas)?”, the data obtained 

seems to support my hypothesis that increasing salinity increases viscosity; a positive correlation. Two different 

models have been found, linear and quadratic. Although the statistical analyses have showed that the quadratic 

model is better than the linear model, it is important to be critical of the fact that quadratic models are 

contextually unrealistic, as they grow rapidly. While the model may pass through all of the current data very 

well, it may not be generalisable for higher values. In other words, at a much higher salt concentration than my 

highest salinity interval, 400 gdm−3, the viscosity value according to the model—when extrapolated—would 

be extremely high due to the increasing rate of change of a quadratic function, which is impractical. In contrast, 

the linear model has a constant rate of change, therefore higher values of viscosity are predictable and more 

likely to be accurate. Furthermore, a linear relationship is generally better since it mathematically makes sense 

and is more commonly found within many physical phenomena. As such, the most suitable relationship between 

the salinity (𝑐) and viscosity (𝜂), according to this investigation, can be quoted as: 

𝜂 = 0.000122𝑐 + 0.0000946 (5) 

This is the equation of the line given in Figure 4 using the large ball.  

Figure 5: A graph (created using Desmos) showing a quadratic relationship between salt concentration, c, and viscosity, 

η, using a small steel ball (red) and a larger one (blue). The equations and the r2 values are given. 

(Small ball) 

(Large ball) 
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The findings of my investigation can be linked back to what sparked my interest in investigating this topic. 

Since salinity and viscosity are directly proportional, it makes sense that it would be harder to swim in more 

salty areas such as the Dead Sea, as more force is required to “push through” the water. This also means that it 

would take longer to swim in salty water than in swimming pools, assuming that chlorine has no effect on 

viscosity, however this could be a topic for further investigation. As such, an implication could be that swimmers 

are likely to perform better in less salty water.  

 

7. EVALUATION 

Although I took into consideration the extraneous variables which could affect my investigation, there 

were a few assumptions made and limitations to the experiment which could have hindered the validity 

of my results. According to Stokes’ law, the velocity measured should be the ball’s terminal velocity. Since I 

measured the average velocity between two points, it is uncertain whether or not this represented the terminal 

velocity. This is more applicable to the small ball than the large one, because if we look at (2), we can see that 

for a fluid of constant viscosity, a ball of larger radius would have a lower terminal velocity that is more 

achievable experimentally. This maybe explains why the small ball’s gradient percentage uncertainty is almost 

double the large ball’s. These uncertainties were relatively high and could have potentially hindered the 

precision of my overall results. It could have perhaps been due to the number of calculations involved in 

calculating the viscosity using the measured terminal velocity and other variables, all of which possess relatively 

few uncertainties, but cumulatively led to a somewhat large uncertainty.  

 

It was also strange that the two balls had different rates of change, i.e. gradients. In order to resolve the issue of 

varying gradients, it could be beneficial to conduct further conditions where different sized balls are used and 

then comparing the gradients, which could help in determining a more accurate and valid value for the rate of 

change. That being said, the gradient of the graphs does not represent any meaningful physical quantity but 

rather simply shows the rate of change. As such, the value of the gradient should not be a significant issue as it 

does not weaken the idea that there is a positive linear relationship.  

 

Additionally, the results lacked accuracy as they were significantly different from the true values as 

aforementioned. The reason as to why the viscosity value for water was off by about 103 is perhaps due to the 

balls’ terminal velocity values being incorrect, as this variable is the most likely to have been altered due to the 

experimental design. The separation between the light gates was 20cm, which means that the balls perhaps did 

not have enough time to reach their terminal velocity. This is demonstrated in the calculations below, which 

determine the ‘true’ terminal velocity value which corresponds to a known literature value of the viscosity. 

Rearranging (2) for the terminal velocity: 

𝑣𝑡 =
2𝑔𝑟2(𝜌 − 𝜎)

9𝜂
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Substituting in values for the variables and for the viscosity of saltless water: 

𝑣𝑡 =
2 × 9.81 × 0.009442(8050 − 1000)

9 × 0.00089 
 

≈ 1540 ms−1 (3 𝑠. 𝑓. ) 

 

As we can see, this value is extremely and unexpectedly large and is significantly different from the velocity 

measured, 1.387ms−1 (see Table 4), differing by an order of magnitude of 103. This makes sense as it explains 

the large systematic errors found in Figure 4. Since water is not a very viscous fluid, the short distance between 

the light gates was not enough to achieve this calculated terminal velocity. Using a larger measuring cylinder 

(e.g. 500 ml) could help in mitigating this systematic error as it would allow for a greater separation distance 

thus giving the balls more time to reach a higher velocity closer to the terminal velocity. Moreover, a larger 

measuring cylinder would have decreased the proximity between the balls and the walls thus reducing the impact 

on the velocity being altered. Although, using a larger measuring cylinder would have required more water and 

consequently more salt in order to achieve the same concentrations.  

 

Despite these systematic and random errors which hindered the accuracy and precision of the results, a strong 

linear correlation is evident, suggesting that viscosity is directly proportional to salinity.  
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